数学论文发表格式高中数学专题研究
发布时间:2015-06-29
本篇文章是由《大学数学》发表的一篇数学论文,(双月刊)创刊于1984年,本刊是经科技部批准,由教育部主管,教育部数学与统计学教学指导委员会、高等教育出版社、合肥工业大学主办的全国性以教学为主的数学刊物。
摘 要:高中数学的参数广泛地存在于中学数学的各类问题中,也是近几年来高考重点考查的热点问题之一。以命题的条件和结论的结构为标准,含参数的问题可分为两种类型。一种类型的问题是根据参数在允许值范围内的不同取值(或取值范围),去探求命题可能出现的结果,然后归纳出命题的结论;另一种类型的问题是给定命题的结论去探求参数的取值范围或参数应满足的条件。本文拟就第一类问题的解题思想方法——分类与讨论作一些探讨。
关键词:高中数学;分类讨论思想;解题
在数学教学中,解决根据参数在允许值范围内的不同取值(或取值范围),去探求命题可能出现的结果,然后归纳出命题的结论的参数问题,通常要用“分类讨论”的方法。
一、科学合理的分类
把一个集合A分成若干个非空真子集Ai(i=1、2、3•••n)(n≥2,n∈N),使集合A中的每一个元素属于且仅属于某一个子集。即
① A1∪A2∪A3∪•••∪An=A
②Ai∩Aj=φ(i,j∈N,且i≠j)。
则称对集A进行了一次科学的分类(或称一次逻辑划分)
科学的分类满足两个条件:条件①保证分类不遗漏;条件②保证分类不重复。在此基础上根据问题的条件和性质,应尽可能减少分类。
二、分类讨论的方法和步骤
确定是否需要分类讨论以及需要讨论时的对象和它的取值范围;确定分类标准科学合理分类;逐类进行讨论得出各类结果;归纳各类结论。
例1,若函数f(x)=a+bcosx+csinx的图象经过点(0,1)和( ,1)两点,且x∈[0, ]时,|f(x)|≤2恒成立,试求a的取值范围。
解:由f(0)=a+b=1,f( )=a+c=1,求得b=c=1-a
f(x)=a+(1-a)(sinx+cosx)=a+ (1-a)sin(x+ )
∵
①当a≤1时,1≤f(x)≤a+ (1-a)∵|f(x)|≤2∴只要a+ (1-a)≤2解得a≥ ∴- ≤a≤1;②当a>1时,a+ (1-a)≤f(x)≤1,∴只要a+ (1-a)≥-2,解得a≤4+3 , ∴1
例2,已知函数f(x)=sim2x-asim2
试求以a表示f(x)的最大值b。
解:原函数化为f(x)=
令t=cosx,则-1≤t≤1
记g(t)=-( 。t∈[-1,1]
因为二次函数g(t)的最大值的取得与二次函数y=g(t)的图象的顶点的横坐标相对于定义域[-1,1]的位置密切相关,所以以 相对于区间[-1,1]的位置分三种情况讨论:
(1) 当-1≤ ≤1,即-4≤a≤4时,b=g(t)max= , 此时t= ;
(2) 当 <-1, 即a<-4时,b=-a , 此时 t=
(3) 当 >1, 即a>4时,b=0, 此时, t=1
综上所述:b=
例3、等差数列{an}的公差d<0,Sn为前n项之和,若Sp=Sq,(p,q∈N,p≠q)试用d,p,q表示Sn的最大值。
略解:由Sp=Sq p≠q可求得
∵d<0,∴a1>0,当且仅当 时Sn最大。
由an≥0 得n≤ ,由an+1≤0得,n≥
∴ ≤n≤ ,∵n∈N,∴要以 是否为正整数即p+q是奇数还是偶数为标准分两类讨论。
(1) 当p+q为偶数时n= ,Sn最大且为(Sn)max=
(2) 当p+q为奇数时,n= 或n= , Sn最大,且 为(Sn)max=
分类讨论的思想是一种重要的解题策略,对于培养学生思维的严密性,严谨性和灵活性以及提高学生分析问题和解决问题的能力无疑具有较大的帮助。然而并不是问题中一出现含参数问题就一定得分类讨论,如果能结合利用数形结合的思想,函数的思想等解题思想方法可避免或简化分类讨论,从而达到迅速、准确的解题效果。
例4、解关于x的不等式: ≥a-x y
略解:运用数形结合的思想解题如图:
在同一坐标系内作出y= 和
y=a-x的图象,
以L1 , L2, L3在y轴上的截距作为分类标准, -1 0 3 x
知: 当a≤-1时; -1≤x≤3 L1 L2 L3