高速铁路中低压缩性土桩−筏(网)地基加固效果研究
发布时间:2022-04-16
摘要:基于沪宁(上海—南京)城际铁路 CFG 桩−筏地基(预压期超短,4 月)和京沪高铁砂桩−网地基(昆山试验段预压期超长,间隔 5 a)现场试验,测试获取路基沉降变形、孔压消散、桩土压力分布变化等规律,对比分析桩筏与桩网地基工作性状差异。研究结果表明:桩−筏和桩−网地基联合堆载预压可以满足中低压缩性土高铁无砟轨道工后沉降控制要求,桩−筏地基沉降总量与沉降速率均小于桩−网地基的沉降总量与沉降速率,堆载预压时间可以弥补地基加固结构的不足;受桩体刚度影响,CFG 桩−筏桩体荷载分担比大于砂桩桩−网地基的荷载分担比,其超孔压消散速率则远比后者的小;筏板具有类似拱的传荷作用,板下应力分布较均匀,桩网路基基底压力分布呈倒钟型;在工期紧张情况下,桩筏地基工后沉降控制效果比桩网地基的控制效果优,但前者造价较高,高铁地基加固技术选择时需考虑综合效益。
关键词:桩−筏(网)复合地基;中低压缩性土;工后沉降控制
高速铁路无砟轨道路基工后沉降控制标准要求一般路基的工后沉降控制在 15 mm 以内[1],为满足高标准设计要求,在工程性质较好的中低压缩性地基土上修建高速铁路,路基工程仍需进行地基加固处理。在一般桩复合地基基础上高铁地基加固设计中,上部结构也不断丰富,如桩顶加土工格栅的桩−网地基以及铁道部新引进的上部加筏板的桩筏地基。为尽快完成地基固结,工程现场还采取联合堆载预压措施。高铁桩−筏(网)复合地基的工后沉降控制已有较多的研究,主要从加固机理[2−3]、计算方法[4−6]等方面单独分析桩筏或桩网的沉降控制效果,如:肖宏等[7]通过模型试验研究桩网地基在高铁无砟轨道中的加固效果;张继文等[8−9]在京沪高铁开展现场测试,研究桩筏地基的工作性状、承载机理,但对二者之间对比研究较少;刘俊飞等[10]对一般路基工程中的桩筏和桩网地基进行了初步对比,但仅阐述了其作用原理计算方法,缺乏试验研究也未考虑联合堆载预压的影响。此外,堆载预压研究集中在稳定性计算、预压时间[11−13]等方面,并在高铁建设中得到应用[14]。但对某些特殊预压条件下高铁地基处理效果的研究不多见,如沪宁(上海—南京)城际铁路因 4 次重大技术调整(200 km/h 有砟变和 300 km/h 无砟),在工期紧迫情况下预压时间仅为 4 月 (客运专线无砟轨道铺轨建议预压时间 3~6 月);而京沪昆山试验段因技术改造,在第 1 次预压完成后时隔 5 a 进行二次预压,预压时间累积达 15 月。在预压时间差异很大情况下对比研究高铁无砟轨道桩筏与桩网地基的工后沉降控制效果,目前还未见相关研究和报道。为此,本文作者基于沪宁城际铁路、京沪(北京— 上海)高速铁路路基试验段开展现场测试试验,测试中低压缩性桩筏与桩网地基沉降变形规律,通过沉降变化、桩土压力分布以及孔压消散规律分析桩−筏地基与桩−网地基工后沉降控制效果与工作性状差异,并研究不同地基处理方式、不同预压时间对沉降控制的影响,以便为高速铁路路基工程中地基处理技术提供有益建议。
1 试验段概况
1.1 沪宁城际铁路
沪宁城际铁路为设计时速为 300 km/h 的无砟轨道。现场试验断面地基主要为粉质黏土,主要呈现硬塑状态,具体参数如表 1 所示。试验段地基土属于工程性质较好的中低压缩性土[15],但为满足高铁严格的工后沉降控制标准,仍需对该地基进行加固处理。试验断面分别采用 CFG 桩桩筏复合地基,桩间距为 1.6 m,桩径为 0.5 m,加固深度为 24.5 m,呈正方形布置;筏板厚为 0.5 m,宽为 12.5 m,铺设 0.5 m 厚碎石垫层。
沪宁城际铁路建设工期紧张,为加速地基固结沉降,在桩筏桩网复合地基加固基础上又实施了堆载预压措施,设计路基预压时间仅为 4 月,客运专线路基工程建议一般不低于 6 月的预压期,因此,沪宁城际铁路预压属于超短工期堆载预压。
1.2 京沪昆山试验段
京沪高铁昆山试验段地基属第四系全新统冲湖积层,表层为黏土,灰黄色,软−硬塑;下卧层为黏土、粉土及粉质黏土,软−硬塑,具体参数如表 2 所示。从表 2 可知该试验段地基土基本属于中低压缩性土。
试验段路基面宽为 13.8 m,地基加固措施采用砂桩加土工格栅,桩间距为 2.0 m,桩径为 0.4 m,加固深度为 15.0 m,呈梅花形布置;布置一层土工格栅,铺设 0.6 m 厚砂垫层地基。
昆山试验段原计划采用有砟轨道,一般路基的工后沉降控制标准为≤10 cm,采用(砂)桩网复合地基结合堆载预压的加固措施。而后路基采用无砟轨道,工后沉降控制标准提高至≤15 mm,在不改变(砂)桩网复合地基加固措施的基础上,原试验段进行了二次堆载预压。因此,昆山试验段的(砂)桩网复合地基共 2 次预压过程,其预压处理概况如表 3 所示。京沪昆山试验段预压历时 5 a,堆载时间累积 15 月,与沪宁城际铁路相比属于超长时间堆载预压。
2 现场试验方案
2.1 沪宁 CFG 桩−筏复合地基
沪宁试验段采用单点沉降计结合沉降板对路基沉降量进行监测。单点沉降计分别埋设于路基中心和路肩处的桩底、地基不动层,观测频次为 1 次/d,单点沉降计和沉降板埋设如图 1 所示。
2.2 昆山砂桩−网复合地基
昆山试验段路基变形观测系统分为路基面沉降和基底沉降观测,如图 2 所示。路基面每 5~50 m 设置 1 个观测面,每个断面 2 个观测点,位于两侧路肩处。采用直径为 0.1 m、桩长为 0.6 m 的混凝土圆柱,内设直径为 16 mm 的钢筋作为观测桩。
3 地基工作性状测试数据分析
3.1 沉降变形规律
测试得到沪宁城际铁路桩筏地基的沉降变化曲线如图 3 所示。从图 3 可见:沉降量随时间及荷载的增大而增大,路肩累积最大沉降值达到 16.62 mm,路基中心累积最大沉降值达到 15.76 mm;沉降增长速率在填筑加荷期间变大,在间歇期间变小,进入恒载期后,沉降曲线逐渐变缓;随着预压时间的延长,沉降值增大渐趋缓慢,沉降日趋稳定。
昆山试验段砂桩地基第 2 次预压沉降随时间和荷载的变化规律如图 4 所示。从图 4 可见:断面线路右侧沉降量最大,中心的次之,左侧路肩沉降板的沉降量最小;这三者随荷载和时间呈现一致的变化规律,即随时间和荷载的增大而平稳地增大,进入恒载期后,三者沉降均明显趋于缓和。
对比 2 种地基沉降变化规律可知:桩筏和桩网复合地基沉降过程呈现出一定的区别;桩网复合地基在填筑开始即出现较大的沉降量。这是此时地基土相对松散以及碎石垫层的调整所致,在预压恒载期间断面沉降曲线表现比较平稳。桩筏复合地基与桩网相比,其加载初期产生的沉降量较小。这是因为在加载初期,主要是桩−筏一起共同受力工作,桩间土需在褥垫层的一段时间调整下才能参与分担荷载。
3.2 桩土压力
荷载分担比是表征复合地基桩土共同作用程度的参数,是复合地基重要的设计参数。为明确桩筏桩网结构在路基荷载下不同的荷载分担模式,在此分析二者桩土压力分布形式与桩土应力比变化规律。
测试得到沪宁 CFG 桩筏复合地基土压力分布,发现整个横断面土压力随着填筑的开始,由于桩体弹性模量远大于桩周土的弹性模量,桩顶沉降小于桩间土沉降,荷载大部分向桩顶转移,横断面土压力有应力集中现象,应力曲线呈波浪状分布。单独从桩间土土压力的横向分布来看,越靠近筏板边缘,桩间土土压力反而越大,认为刚性筏板有类似拱的作用,根据拱的传荷特点,荷载向两边转移造成板下土应力分布较均匀。
测试昆山砂桩桩−网复合地基土压力分布如图 5 所示。从图 5 可见:该地基土压力分布沿路基横剖面基底应力中间大,两边小;随着时间延长及荷载增大,这种趋势越来越明显。
二者桩土应力比的变化规律较为相似,桩−筏地基桩土应力比 n 随时间与荷载稳定后约为 30,而桩− 网约为 10。根据二者的置换率 m 换算得到 CFG 桩桩− 筏复合地基桩荷载分担约为 50.4%,砂桩桩−网复合地基为 17.9%,即砂桩这类散体桩发挥的承载作用远小于 CFG 半刚性桩的承载作用。
由于二者路基荷载作用不同,土压力本身不能说明桩筏与桩网地基的差异,但土压力分布形式与桩土应力比变化可以作为分析其性状的依据。通过上述规律可以发现,桩−筏与桩−网的基底应力分布形式差异明显,桩−筏地基土压力基底分布存在边际效应,由于刚性混凝土板的存在,使得上部路基荷载作用经过混凝土板与褥垫层的调整,部分向两侧传递;而桩− 网地基则呈现一般意义上的柔性基础特点,即在加载初期路基中部应力最大,呈现比较明显的倒钟形分布,随后期荷载作用,可能逐步会呈现马鞍形分布,但实际测试结果尚未发现这一变化趋势。
3.3 超孔压消散规律
通过对地基孔压消散规律的分析,可以明确地基土固结沉降过程,并了解其固结系数渗透系数等土体压缩变形指标的变化情况。测试沪宁桩筏地基孔隙水压力在填筑过程中随时间的发展规律如图 6 所示。从图 6 可见:加荷期间超孔压增加,在间歇期间,超孔压消散;随着时间和荷载的增加开始逐渐增大,且在 6~16 m 深度范围内的变化趋势一致,这可能是地下水位的上升所致;随着时间增加逐渐消散;最深的测点则反映孔压有所回升,表明孔隙水自上而下渗流,土体逐渐固结。
昆山砂桩桩网复合地基孔压消散规律如图 7 所示,该曲线也可以大致分 3 个阶段:
(1) 加载期。该时期各深度处超孔压随荷载增加而逐渐增大。与前述两断面相比,超孔压随加载、间歇而增长、消散的趋势并不十分明显,认为是由于地基中附加应力较小。
(2) 等载期。随着加载 1.8 m 等载预压土柱,超孔压随之增大,之后逐渐消散。
(3) 超载期。受填土及加载 1 m 超载土柱的影响,超孔压有较大增加。总体而言,埋深较浅处孔压计数值变化幅度大于深处孔压计。进入超载预压期之后,各深度处超孔压总体上呈逐渐减小趋势。
昆山砂桩桩−网地基孔压增长消散速率见表 4。由 4 可知:随着时间延长,砂桩地基超孔压增长、消散速率的变化并无规律,但增长、消散速率与加载速率的比值则在一直减小,即在加载速率不变的情况下,超孔压增长、消散速率逐渐减小,这说明砂桩地基的排水作用逐渐减弱。
本文来源于:《中南大学学报(自然科学版)》是中南大学主办的以材料、冶金、选矿、化学化工、机电、信息、地质、采矿、土木等专业学科为主的科技期刊。设有:地质采矿、选矿冶金化学、材料科学与工程、机电与信息工程、土木等栏目。
经分析认为:二者在超孔压消散体现出的差异的主要原因不在于桩筏或桩网这些上部结构,主要受桩体材料影响;沪宁城际铁路采用的 CFG 桩属于半刚性桩,认为其属于完全不透水桩,而昆山采用的砂桩则有透水性,因此,桩−筏地基超孔压消散速率(0.000 2 kPa/d)远小于砂桩桩−网地基的超孔压消散速率 (0.270 0 kPa/d)。砂桩在固结排水过程中,泥土细颗粒被带入砂桩体,随之砂桩的渗透系数变小,地基土的固结系数亦越来越小,相应地,地基沉降速率变慢。孔压变化验证了这一规律。砂桩(散体材料)本身的强度和密实度增加,砂桩的作用越来越明显,后期复合地基的作用逐渐得到体现,导致总沉降量减小。即在填筑初期砂桩是以排水固结作用为主,随时间及荷载的增加,排水固结作用逐渐减弱,复合地基作用逐渐增强,逐渐与 CFG 桩地基性状一致。
4 工后沉降控制效果对比分析
4.1 不同地基类型效果分析
根据曲线拟合法,得 2 种处置方法下的工后沉降预测值。表 5 所示为桩筏地基沉降预测结果,表 6 所示为桩网地基沉降预测结果。由表 5 和表 6 可知:CFG 桩−筏、砂桩−网复合地基联合堆载预压的工后沉降预测值分别为 6.76 mm 和 5.07 mm,均满足无砟轨道的路基工后沉降控制要求。
通常认为 CFG 桩−筏复合地基的工后沉降控制能力比桩−网复合地基的控制能力强,但考虑到砂桩−网复合地基在路基静置近 5 a 后,经 2 次预压后的工后沉降也仅为 5.07 mm,说明中低压缩性土的工后沉降与地基处理类型的关系并没有软土明显,即中低压缩性土的地基处理类型经 CFG 桩复合地基或砂桩复合地基处理后的工后沉降均能满足无砟轨道路基的要求。不同的地基处理方式在总沉降量的控制方面存在明显的差异。CFG 桩−筏复合地基的实测沉降量和推测值分别为 16.4 mm 和 23.16 mm,而桩−网复合地基的实测沉降值与推测值分别为28.68 mm和34.71 mm。经过长期的静置与 2 次预压,砂桩桩网地基工后沉降的控制取得了与 CFG 桩桩筏复合地基相近效果。
4.2 不同预压时间效果分析
将本文提及的桩−筏(网)复合地基及其对应的预压措施与工后沉降之间的关系如表 7 所示。从表 7 可知:桩−筏(网)复合地基联合堆载预压处理后的无砟轨道工后沉降相近,为 5~7 mm,即工后沉降的处理效果相近。
昆山断面超载前等载放置期有 1 810 d,在如此长的放置期下散体材料桩的工后沉降与沪宁超载前放置期为 39~90 d 的刚性桩相近,这说明足够的预压时间能弥补地基处理类型在总沉降控制的不足,同样能满足无砟轨道工后沉降控制要求。——论文作者:左珅,王敏,徐林荣,朱华鹏