一次高原低涡东移引发四川盆地暴雨的诊断分析
发布时间:2020-05-06
摘要本文采用中国自动气象站与CMORPH卫星融合的降雨量资料、NCEPFNL再分析资料以及FY-2E相当黑体亮温资料,对2014年7月四川的一次暴雨天气进行诊断分析。结果表明:1)此次暴雨产生于高原低涡东移出高原,其南部向四川盆地分裂出低槽的过程中。主要降雨区位于低槽前部,降雨带呈西南至东北走向;2)暴雨过程中,副热带高压西伸至四川东南部,其外围偏南风向暴雨区持续提供水汽。暴雨区处于水汽辐合区,暴雨中心低层存在的不稳定能量区为暴雨的产生与发展提供充足的水汽与能量;3)在暴雨开始前期,高原低涡东侧和东南侧低层700hPa存在一正涡度平流区。这表明低层的正涡度得到发展,风场的辐合增强,上升运动得到发展,从而有利于强对流活动的产生,造成降水过程。这有可能是此次四川盆地暴雨过程产生的动力原因。从视水汽汇分析可知,在暴雨过程中,暴雨区中低层视水汽汇发展明显,而在暴雨后期暴雨区低层出现视水汽汇负值分布。这表明降水过程中所释放的潜热增加,加热大气,继而大气反过来作用于系统的维持与发展。这有可能是此次暴雨过程维持的能量原因。
关键词高原低涡,暴雨,诊断分析
1.引言
高原低涡是在青藏高原的热力作用以及动力作用下生成于高原主体的一种中尺度天气系统。由于高原低涡在500hPa上闭合等高线以及气旋性流场特征较为明显,因此常选取500hPa为高原低涡的定义高度层[1]。尽管大多数高原低涡在高原主体生成并消亡,但部分高原低涡仍能够东移出高原,并导致高原下游地区产生暴雨等强天气过程[2]。因此,东移型高原低涡一直是学者的关注和研究重点。
对东移型高原低涡的相关研究表明,高原低涡东移过程主要发生在夏季,高层的辐散场配置是高原低涡东移的主要动力配置[3]。在环流形势方面,500hPa冷空气、副热带高压、南亚高压或西风急流与高原低涡东移出高原有着密切的联系[4][5]。同时,高原低涡不同类型的东移路径频次与我国长江流域、东北地区以及黄河流域等地的降水量有很好的对应关系,高原低涡的降水还受到副热带高压的位置与强度变化的影响[6],同时WRF模式中不同的参数化方案对高原低涡的移动路径以及强度的模拟效果具有较大的差异[7]。在高原低涡东移发展机制方面,前人利用诊断分析和数值模式研究发现地面感热输送在高原低涡生成阶段起主导作用,而凝结潜热释放在其发展阶段起主导作用[8][9][10][11]。冷性空气强度大小影响高原低涡的斜压不稳定性,从而导致低涡的移动速度及发展受到影响[12],并且对流层中低层适度的冷空气对高原低涡发展起促进作用[13]。此外,凝结潜热与对流活动也在高原低涡东移过程中存在一种正反馈发展机制[14][15]。在诊断分析方面,500hPa低涡正涡度区东传使四川盆地低层涡度得到增强,从而加强或诱发西南低涡产生与发展,造成暴雨过程[16][17][18]。近年来,一些新型物理量被引入对高原低涡东移降水的分析中,相关研究表明,非地转湿Q矢量以及相对螺旋度的水平分布与后六小时的降水中心有一定的预报意义。湿位涡与垂直螺旋度反应降水区大气的动力特征,低层为正涡度与高层为负涡度的动力配置[19][20]。
以上研究丰富了人们对高原低涡东移以及产生暴雨过程的认识。本文将以2014年7月30~31日一次东移型高原低涡对四川盆地造成的暴雨天气过程为例,对此次暴雨过程进行诊断分析,以加强人们对东移型高原低涡降水过程的认知。
2.资料与暴雨过程概况
2.1.资料选取
本文所用资料为美国国家环境预报中心(NCEP)提供的逐日4次的1˚×1˚FNL再分析资料、中国地面自气象站与CMORPH融合的0.1˚×0.1˚逐时降雨量资料以及0.1˚×0.1˚逐时风云卫星(FY2E)相当黑体亮温资料。
2.2.暴雨过程概况
2014年7月30~31日,受到高原低涡东移影响,四川盆地西部发生了一次暴雨天气过程,降雨带呈西南至东北走向且稳定少动,中心分别位于四川江油和眉山,24h累积降水量分别达到210mm和150mm(图1(a))。从逐6h累积降水量分布可见(图1(b)~(e)),此次强降水过程主要发生在30日18:00~31日06:00,且30日18:00~31日00:00和31日00:00~31日06:00的6小时累积降水量均达到80mm以上。因此,本文主要以30日18:00~31日06:00强降水时间段为研究对象分析此次暴雨过程的发生发展机制。
3.暴雨过程分析
3.1.暴雨天气影响系统分析
3.1.1.高空环流形势特征
暴雨是在有利的大尺度环流形势下产生的。从500hPa高度场可知,7月30日12:00(图2(a))暴雨发生前,我国青海至东北地区存在一个高压(蒙古高压)与两个低涡(高原低涡和东北冷涡),其中导致此次四川盆地暴雨的高原低涡已东移至川甘青三省交界处。同时,副热带高压已经西伸至四川东南部,其外围偏南风将暖湿空气持续输送至四川盆地;至7月30日18:00(图2(b))暴雨发生时,高原低涡位置稳定少移,但高原低涡南部分裂出一低槽,低槽前有利于产生暴雨过程。此时,副热带高压进一步西伸,副高外围的东南气流继续向暴雨区输送水汽。在整个暴雨过程中四川上空的500hPa低槽一直存在,直至7月31日12:00(图略),高原低涡开始西北移动,四川上空的低槽逐渐消失减弱,副热带高压中心南退至贵州、广西一带,此次暴雨过程基本结束。
3.1.2.对流活动
由7月30~31日风云卫星(FY-2E)红外云顶亮温(TBB)空间分布可见,暴雨发生前(图3(a)),四川盆地内存在两个对流云团,但其强度与范围均较小。30日18:00开始(图3(b)),位于盆地南部的对流云团快速发展北移,其中心强度中心云顶亮温<−60˚C,而盆地北部的对流云团同样发展迅速。之后两对流云团逐渐合并,总体呈西南—东北走向(图3(c)),这与同期24h累积降水量空间分布一致(图1(a))。31日00:00(图3(d)),对流云团位置维持稳定不变,但强对流中心有所北移。至31日06:00(图3(e)),云团开始分裂减弱。到31日12:00(图3(f)),盆地内对流活动减弱消失,强降水基本结束,但在盆地东南侧的多省交界地区有新的对流活动生成。
推荐阅读:气象高级工程师职称评审条件
3.2.物理量场分析
3.2.1.水汽输送
图4为850hPa水汽通量分布。由图可知,低层850hPa的水汽主要来至南海地区,经广西、贵州向四川盆地输送。30日12:00(图4(a))暴雨发生前,水汽通量大值中心位于贵州中东部地区,而四川盆地内水汽输送较弱。30日18:00(图4(b)),水汽输送开始向四川盆地东南部移动,其大值中心位于重庆附近,最大可达10g∙hPa−1∙s−1∙cm−1。31日00:00(图4(c)),水汽通量大值中心向北移动至盆地北部附近,为本次暴雨过程提供充足的水汽。31日06:00(图4(d))开始,盆地内的水汽输送明显减弱。
3.2.2.热力条件
30日12:00(图6(a)),暴雨中心600hPa以下为假相当位温等值线密集区,最大中心达到362K,表明在暴雨发生前低层大气已极不稳定。30日18:00(图6(b)),暴雨中心低层不稳定层结开始向上发展,352K线已抬升至600hPa,非常有利于暴雨的发生发展。31日00:00(图6(c))暴雨发展期,暴雨中心700hPa以下假相当位温等值线仍非常密集,这表明尽管降水消耗了前期聚集的不稳定能量,但700hPa以下一直是对流不稳定状态,为暴雨发展提供充足的不稳定能量。到暴雨后期(图6(d)),暴雨中心700hPa以下等值线更加密集,表明在暴雨中心低层对流不稳定层结仍在加强,为下一次的强降水过程聚集大量的不稳定能量。
3.2.3.动力条件
图7为暴雨过程中垂直速度沿着降水大值中心(32˚N)的垂直剖面图。由图可知,30日12:00(图7(a))暴雨开始前,暴雨区低层750hPa以下有较弱的下沉运动,750hPa以上几乎全为上升运动分布,有利于暴雨的产生。30日18:00(图7(b)),暴雨区上升运动有所增强,从低层一直至200hPa为上升运动,上升运动大值中心位于700hPa左右,其值达到−0.9Pa∙s−1。31日00:00(图7(c)),暴雨区气流上升运动显著增大,上升运动大值中心向上移动至500hPa左右,其值达到−1.8Pa∙s−1。暴雨区强烈地上升运动以及良好的水汽条件有利于暴雨的维持和发展。31日06:00(图7(d)),暴雨区500hPa以下基本转为下沉运动控制,500hPa以上仍为强烈地上升运动控制,上升运动大值中心位于350hPa左右,其值达到−1.8Pa∙s−1。但由于暴雨区低层转为下沉运动,则不利于将水汽向上层输送,暴雨开始减弱。直至31日12:00(图略),暴雨区整层转为下沉运动,此次暴雨过程基本结束。
图8为暴雨过程中涡度沿着降水大值中心(32˚N)的垂直剖面图。30日12时(图8(a))暴雨开始前,暴雨区上空500hPa以下为正涡度分布,500hPa以上为负涡度分布,正涡度中心位于700hPa左右,其值达到4×10−5s−1。同时,在暴雨区左侧550hPa上存在一个中心值达到8×10−5s−1的正涡度中心。暴雨区上空这种中低层为正涡度,高层为负涡度配置有利于暴雨的产生。30日18时(图略)随着高原低涡的东移向四川分裂出低槽,槽前的正涡度逐渐与暴雨区低层正涡度发生叠加,此时暴雨区一直到300hPa左右为正涡度分布,但正涡度中心还是位于低层700hPa左右。直至31日00时(图8(b)),暴雨区上空正涡度发展明显,正涡度中心向上发展至500hPa,中心值增大至6×10−5s−1。